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Tight Bounds on the Complexity of Parallel Sorting

Torn Leighton

Mat hematics Department and
Laboratory for Cornputer Science

Massachuietts Institute of Technology
Cambridge, Massachusetts 021S9

Abstract: In this paper, we prove tight upper and lower bounds on the number of processors,
information transfer, wire area and time needed to sort N numbers in a bounded-deg;ree fixed-
connection network. Our most important new results are:

1) the construction of an N-node degree-3 network capable or sorting N numbers in
O(logN) word steps,

2) a proof that any network capable of sorting N (7 log N)-bit numbers in 7' bit-steps
requires area A where AT' > 1)(N 2 log 2 N), and

A3) the construction of a "small-constant-factor" bounded-degree network that sorts N
e(log N)-bit numbers in T = E)(log N) bit steps with A = ()(N2) area.

Key Words: area-time tradeoffs, circuit complexity, 'communication complexity, fixed--.onnection
V network, information transfer, packet routing, parallel computation, sorting, universal computer,

very large :ncale integration.
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1. Introduction

The problem of sorting N numbers with a fixed-connection network has a long and rich history
[1-301. For the most part, the complexity of parallel sorting has been measured in terms of the
number of processors used and the number of parallel operations performed. In conjunction with
the development of distributed computing and very large scale integration (VLSI), the cc.mplexity
of parallel sorting has also been measured in terms of required information transfer and .-hip area.
Determining the complexity of sorting in these four measures has remained a difficult problem
for some time. Recently, however, several significant advances have been made. In some cases
(particularl) the breakthrough work of Ajtai, Komlos and Szemeredi [2]), tight bounds )ave been
proved. In other cases (most notably [24] and [28j), methods have been developed that almost
lead to tight bounds and that substantially increase our knowledge of the problem.

In this paper, we combine the work of [2] and [28] with new methods to precisely determine
the complexity of sorting with fixed-connection networks. Our results and their rel.vance to
previous work are described in the remainder of the introduction. The proofs are cortained in
Sections 2 through 5. In particular: Section 2 contains a description of a simple sorting lgorithm
that we call columnsort, Section 3 contains proofs of the bounds for the number of nodes needed
to sort, Sec.ion 4 contains proofs of the bounds for information transfer and area, and Section
5 describes irea-optimal, small-constant-factor networks. We conclude with some remarks and
directions f(r future research in Section 6.

1.1 Two Fundamental Sorting Problems

* *- Much of the work on parallel sorting has been directed towards solving the following two
problems.

Problem 1: Construct an O(log N)-level circuit that sorts N numbers.

An example of a 3-level circuit that sorts 4 numbers is shown in Figure 1. In general, each
level consistls of N/2 disjoint comparators. Each comparator can be viewed as an edge that
possibly exchanges the numbers at its endpoints so that the bigger number exits at the endpoint
marked B and so that the smaller number emerges at the other endpoint (marked S). After
passing through all the levels (from left to right), the numbers emerge from the circuit in sorted
order. As the comparisons and exchanges in each level are performed si:iultaneously the total
time requir~d to sort the N numbers is equal to the number of levels in the circuit. Figure 2
illustrates the sorting process for the list 4, 7, 2, 9. In this example, 2 and 4 are exchanged in
the first level, and 4 and 7 are exchanged in the third level.

Proble~n 2: Construct a bounded-degree, 0(N)-node network that sorts N n~mbers in
0(log N) step.

An exanple of a 4-node, degree-3 network that sorts 4 numbers in 3 steps is shown il Figure 3.
As in Probl nn 1, the edges serve to transmit rumbers between processors. In Problem 2, however,
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Figure 1: A S-level circuit for eorting 4 numbera.
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Figure 2: Sorting the liet , 7, 2, 9 with the S-level circuit .sko" i Figure 1.
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Figure 3: A 4-node, degree-$ network that sorts 4 numbers in 3 steps. Initily each node
contains one number. After 3 atepa, the ith amallest number ia in the ith node.
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time, the position of the node in the network, the value of N, as well as the history of *erything
the node has seen and done). For our purposes, however, it will be sufficient to consider local
controls that can be described with a constant number of bits. In the example shown in Figure 3,
each node corresponds to a row of Figure 1 and each edge corresponds to a comparato in Figure
1. In this case, each local control tells its node which edge should be used as a comparator at
each step. Level 1 edges are used at the first step, level 2 edges at the second step, and level 3
edges at the third step. After 3 steps, the numbers are sorted.

Early mork on Problems 1 and 2 led to the construction of a O(log 2 N)-level sorting; circuit [4]
and to the construction of an N-node, degree-3 network that sorts N numbers in (iol;o2 N) steps
[26]. Both constructions are based on the butterfly implementation of odd-even merge sort (e.g.,
see [18, 29,).More recently, Ajtai, Komlos and Szemeredi [2] solved Problem I by constructing
an O(log A')-Ievel sorting circuit. (Henceforth, we will refer to this circuit as the AKS sorting
circuit.) T his result also provided partial solutions to Problem 2; namely an N-node. e(log N)-
degree net Nork that sorts in 0(logN) steps, and a e(Nlog N)-node bounded-degre network
that sorts n O(log N) steps. In both cases, the resulting network for Problem 2 has O(N log N)
edges.

The on y other improvement of the initial e(log2 N)-step bound for Problem 2 is due to Reif
and ValianL (24], who constructed an N-node, bounded-degree network that can sort in 0(log N)
steps with high probability provided that each node is allowed to maintain an 0(log N)-number

', queue. If (as is common) unbounded-size queues are not allowed, then the number of nodes in the
. Reif-Valiant construction may have to be increased by a factor of e(log N) to simulate the queues.

Hence the construction may really require e(N log N) nodes. In addition, the time r.quirement
might have to be increased by a factor of e(log log N) to manage the queues. (Whet.her or not

-: the factor of E(log N) blowup in the number of nodes and of O(log log N) in time is really needed
to simulate the queues is not known. Very recent work by Pippenger, however, suggests that the
blowups may not be needed, at least for a modified version of the algorithm [23].) Moreover, it

'' is known that the randomness assumption cannot be removed from the Reif-Valiant algorithm
since Borodin and Hopcroft [9] showed that any such algorithm requires 11(ViN) st.eps in the
worst case.

In Theorem I of this paper, we show that any solution for Problem 1 can be simply transformed
into a solution fo- Problem 2, thereby extending the work of [2] to solve Problem 2. In fact, we
prove that any depth-T sorting circuit can be transformed into an N-node, degree-3 network that
sorts N numbers in O(T) steps. The proof of this simple yet unexpected fact combines a standard
pipelining argument with a generalization of odd-even merge sort that we call colurrnsort. The
details are provided in Sections 2 and 3.

* 1.2 The it Model of Computation

Problem 2 can be reformulated in a variety of ways. One natural formulation retricts each
node to haie finite memory and control. Such is the case for the bit modelof parallel computation,
where each node has just c bits of state for some constant e that is independent of N. In the
bit model, each bit of each input number and of each sorted number is treated irtdividually.
During a ,ingle bit step, each node can perform a constant number or bit-size operations (such
as a compire). As a consoquence of these restrictions, it is not possible to store a E'(log N)-bit

3
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number in a single node, nor is it possible to compare two e(log N)-bit numbers in a single bit
step. Hence the bit model is far more restrictive than the corresponding word model, for which
Problems I and 2 were originally defined. (Two numbers can be compared in a single word step
in the word model, for example.)

It is well known [12], that any 0(log N)-level sorting circuit in the word model can be trans-
formed into an O(N log N)-node, bounded-degree network that sorts N E(log N)-bit numbers in
0(log N) bit steps in the bit model. In fact, the two networks are the same. Instead of passing
whole numbers at a time from left to right, the bit model version or the network passes the num-

* bers bit-by-bit from left to right, most significant bits first. Each comparator sees two numbers
bit-by-bit, leading bits first. As long as the~leading bits of the two numbers are identical, the
comparator simply passes the bits through. (Of course, the output would be the same if the
comparator were exchanging the bits as long as the leading bits are identical.) Once bits are
found that are different, the comparator knows instantly which number is bigger and henceforth
sends all remaining bits of the bigger number to the node marked B and all remaining bits of the
smaller number to the node marked S. The total time taken is the sum of the number of levels
in the circuit and the length of the bit strings for each number. For O(log N)-bit numbers and
an 0(log N)-level circuit, at most O(log N) bit steps are used.

It is natural to ask whether or not fO(N log N) nodes are really needed to sort N E(log N)-bit
*numbers. For example, it might be possible to sort with O(N) nodes, particularly if more time is
. allowed. In Theorem 2, we show that this is not the case. In fact, we show that no matter how

much time is allowed, fl(N log N) nodes are required to sort N (2 log N)-bit numbers. The result
can be extended to sorting k-bit numbers where k > (I + c)log N for any c > 0, but cannot
be extended for values of k < log N since N (log N)-bit numbers can be sorted (given enough
time) using O(N) nodes [25]. The proof of the lower bound requires that each input is provided
just once and that the input/output schedule is where and when oblivious. The arguments used

are similar to those used by Ullman [29] to prove an il(N) lower bound on the number of nodes
needed to sort N (log N + 1)-bit numbers.

In case it wasn't already obvious, the proof of the f(N log N) lower bound on the number
of processors necessary to sort N numbers in the bit model also provides an O(N) lower bound
on the number of processors necessary to sort in the word model. Taken together, the results of
Section 3 provide tight bounds on the number of nodes needed to sort in both the bit and word
models. In addition, both lower bounds are achieved with 0(log N)-time algorithms (the best
possible).

1.3 Information Transfer and Area Bounds

With the development of VLSI technology, wire area has become an important measure of
a problem's difficulty. Whereas there is no relationship between the number of nodes and the
number of steps necessary to sort N numbers, there is a relationship between the wire area and
the number of steps. In the word model, it is well known that AT 2 > fl(N 2 ) where A is the
minimum area of any network that sorts in T steps [27, 28]. For T = 0(log N), this means
that A > O(N 2 / log 2 N). In Theorem 3, we show that the network constructed in Section 3
achieves this bound. Moreover, the construction can be modified (without increasing the number

• - "~~..................................... -•....... '., - . -.. . . . .. ... ,



bg

of nodes, O(N)) to achieve the AT' lower bound for any T in the range fl(log N) < T < O(vN).
I Formerly, such results were known only for T > f0(log' N) [6].

Of more practical interest is the AT 2 tradeoff for sorting networks in the bit model. Using
crossing sequence techniques, several researchers have shown that the information transfer neces-

" sary to sort A' (log A'+ 1)-bit numbers is at least [2(N). The information transfer or, equivalently,
communication complexity of a problem is the minimum number of bits that must pass ,etween
the left and right halves of the chip during a worst-case computation (provided that each "half"
of the chip oi.tputs half of the bits of the sorted numbers). Since the square of the information
transfer is a ower bound for AT 2 127), we know that AT 2 > 0(N 2 ). Angluin and TFompson
[3] (and later El Garnal [10]) improved this bound to AT 2 > fl(N 2 log N) and Thompson con-
jectured that the true bound is AT 2 > fl(N 2 log 2 N). Although the intuition for the stronger
bound is clea', it can be misleading. For example, the same intuition also leads to the conjecture
that AT 2 > '-(N 2 k 2 ) for sorting N k-bit numbers where k > > 0l(logN). The latter conjecture
is false, however. In fact, the results in this paper can be used to construct networks fo- sorting
N k-bit numbers that zchieve an AT 2 bound of O(N 2klogNlog2 ( k )) which is sigrificantly

l less than fl(11 2rk 2) for large k [18].

In Theorcm 4, we verify that AT 2 > fl(N 2 log 2 N) by showing that the information transfer
necessary to sort N (7 log N)-bit numbers is P(N logN). As before, this bound can be achieved
for all T in .he range [(log N) !_ T < O(V7Nlog N). For each T, the network contains just
O(A' log N) )odes, the fewest possible. Previous constructions for achieving these bounds were
limited to the case when T > [2(log3 N) 16].

1.4 Applications

With th advent of VLSI technology, it has become possible to fabricate large numbers of'
simple processors and to integrate them into large-scale, highly-parallel computers. In some
circles, sucV machines are called supercomputers. Examples include the M.I.T. Connection
Machine and the N.Y.U. Ultracomputer. For the most part, the architectures of these machines
are based en well-known fixed-connection networks such as the hypercube, shuffle-exchange graph,
cube-connected cycles and the FFT butterfly. The reason that these networks are ustd is that
they car support fa-t algorithms for interprocessor communication and routing of data. In fact,
most of the;e machines will spend most of their time trying to get the right data to the right
processor at the right time. Ilence a good solution to the data routing problem is critizal to the
successfrui cn~f,-u,'c'-I of supercomputers.

In a fun larnerital paper 130], Valiant and Brebner formalized the importance of dala routing
by showing that if art N-processor fixed-connection network could solve an M-packct routing
problerm in T(M,!) steps, then it could simulate any M-processor parallel machine with only a
T(Af)-faclur time delay. If M = N and T(N) = 0(log N), such a network could be reasonably
called untv 'rsal since it could simulate any other parallel machine with the same number of
processors regardless of the interconnection architecture) with only an O(logN)-fr.ctor time
delay, the I ast possible.

Although good algorithms are known for fixed-permutation 121] and random-permutation [23,
301 data ro Jtirng proble.rns, the general many-one data routing problem is still best slved as a

V5
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special case of sorting f4, 18, 29], which is why parallel sorting is so important. In fact, were a
good solution to Problem 2 found for N - 106 (the number of processors in currently planned
machines), it would probably provide an excellent basis for the architecture of a supercomputer.

- Unfortunately, all of the constructions described thus far in the paper utilize the AKS sorting
circuit which behaves terribly for "small" values of N (e.g., N < 10100). Although variations of

the AKS construction have been proposed [22], they are still a long way from being considered

practical.

I In Section 5 of this paper, we use columnsort to construct O(log N)-time "small-constant-

-" factor" sorting networks that do not depend on the AKS construction. These networks are area-
*: optimal but they require more than the optimal number of nodes. Unfortunately, researchers

who are building supercomputers appear to be constrained by processing time and the number

of nodes as well as by wire area. Hence the networks in Section 5 are probably still not practical.

Recently, however, we have discovered probabilistic versions of columnsort for which it
appears possible to sort (I -,r)N numbers in nearly 2log Nloglog N word steps on an N-node
shuffle-exchange graph. Although we are still working out the details, it seems quite possible
that the algorithm will improve the traditional log 2 N time bound by an order of magnitude for

N = 106. The details of this work will be reported when completed [19]. Similar observations

have been made by Ajtai [1].

1.5 Summary

The results described in this paper complete the asymptotic characterization or the number
of nodes, number of steps, amount of information transfer and amount of area needed to sort N

h(h N)-bit numbers in a bounded-degree, fixed-connection network in both the bit and word

mo..els. Up to the AT 2 constraint, all of the lower bounds can be achieved simultaneously by
a single construction for each model. In addition, the constructions are of the small-constant-
factor variety when optimality in the number of nodes is sacrificed. For easy reference, we have

summarized the bounds in the Table 1. (It should be noted that the lower bound on the number of

Table 1
Bounds on the Complezity of Parallel Sorting

Word Model Bit Model

Number of Nodes O(N) O(N log N)

Information Transfer O(N) 0(N log N)

AT2 (for fn(log N) _ T < O(%N)) O(N2) O(N2 log2 N)

6



nodes needed in the bit model holds only when the number of bits per number exceeds (1 +c) log N
for sonic constant ( > 0, and that the lower bound on the amount of information transfer needed
in the bit model is only known to hold when the number of bits per number exceeds 7 log N.)
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to this paper. Originally, I had considered the area upper bounds in Theorems 3, 5 and 6 only for
the special case when 7' - O(log N). Independently, Bilardi and Preparata proved (using a very

different construction) the same bounds when T = O(log N) in Theorems 5 and 6, as well as the

general spectrum of bounds for arbitrary T in Theorem 6. Using the recent Bilardi-Preparata

result that bounds the area of the AKS sorting circuit, I was later able to simplify the proofs

of Theorems 3 and 5. All three area upper bounds were extended to their current general form

(i.e., for all T) during discussions with Bilardi.

2. Columnsort

In this section, we describe a simple sorting algorithm that we call columnsort. The algorithm

is a generalization of odd-even merge, but for simplicity, we first describe the algorithm as a

series of elementary matrix operations. The relationship with odd-even merge will be made clear
later.

Let Q be an r X a matrix of numbers where ra = N, a I r and r > 2(s - 1)2. Initially, each

entry of the matrix is one of the N numbers to be sorted. After completion of the algorithm,
the ij entry (0 < i < r, 0 < j < a) of Q will contain the pth sorted number (0 < p < N)

where p = i + jr. For example, Figure 4 illustrates a typical matrix before and after sorting.
(For simplicity, we have chosen a 6 X 3 matrix to illustrate the algorithm even though it does

not satisfy the constraint that r > 2(s - 1)2. We will discuss the relevance of this constraint and

the degree to which it can be relaxed later.)

Columnsort has eight steps. In Steps 1, 3, 5 and 7, the numbers within each column are

sorted. (Just how we accomplish this will depend on the application and does not matter for the

analysis in this section.) In Steps 2, 4, 6 and 8, the entries of the matrix are permuted. The

permutation in Step 2 (shown for a 6 X 3 matrix in Figure 5) corresponds to a "transpose" or

the matrix. The entries are picked up column by column and then deposited row by row (always

going from top to bottom in a column and from left to right in a row). The permutation in Step

4 is the inverse of that in Step 2. The permutation in Step 6 corresponds to an Lr/2-sliift of the

entries and is shown for a 6 X 3 matrix in Figure 6. The permutation in Step 8 is the reverse of

that in Step 6. The step-by-step application of columnsort to the matrix in Figure 4 is shown in

Figure 7.
7
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6 /5 12 0 6 /

/4 4 7 I 7 /3

/0 I /3 2 8 /4

3 /6 9 3 9 15

17 8 2 4 0/6

5 I L 5 /7

(a) (b)

Figure 4: A 6 X 3 matrix before (a) and after (b) sorting.

a g m7i b c
b r Step 2 d' e f
c 0 o g A I

0' J P Step4 J k I
e k q m 0
f r p q r

Figure 5: The transpose and untranspose permutations in Stepa 2 and 4, respectively.

a g m" - d JP
b h n -= e q
C /" 0 Se ._ -cc f

dJ p Step 8 a 9 m
e b n M
f / rC t" 0 -

Figure 6: The shift and unshift permutations in Steps 6 and 8, respectively. The -oo'a denote
arbitrarily small dummy elements, and the o's denote arbitrarily large dummy element..
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The number of nodes in the construction or Theorem 6 is easily seen to be at most

o(N + To N " By using many levels of columnsort, the number of nodes can be reduced

toO(N-+ N' -for any constant ( > 0, without increasing the running time or the area by
T 2 log 2 N

more than a constant factor. (In fact, the increase in time is polynomial in l/e.)

6. Remarks

Ideas sim'lar to those used to develop columnsort can also be found in the work of Haggkvist
and Hell [11.. It is likely that columnsort itself has also been discovered, although we don't
know of any references. Judging from the applications developed in this paper, it is clearly an
important te-hnique that merits further study. The most important open question at this point
is whether or not the technique can be used recursively to construct a simple O(logN)-level
sorting circu t. As yet, we have not seen how to do this, but there are many ways in which the
technique caa be applied. For example, the technique works equally well in a setting in which
lists of numbers are closesorted (i.e., in a setting where every number is mapped close to its final
position). T1 is is similar but stronger than the notion of nearsort employed succesfully by Ajtai,
Komlos and Szemeredi [2]. As another another example, the technique might work well when
combined wi'.h some sort of recursive merge procedure. Lastly, the technique seems to work well
in a probabilistic setting. At this point, it seems likely that a probabilistic circuit with depth
near 2 log N log log N can be constructed using columnsort-like ideas. (Similar observations have
also been made by Ajtai [1].) There also seems to be plenty of room for improvement.

In addition to the questions relating to small-constant-factor o(log2 N)-depth circuits, it would
be interesting to pin down the bounds for numbers of nodes, area and time for sorting N k-bit
numbers for values of k not covered by the results in this paper. Substantial progress along these
lines was recently made by Siegel (25].
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columnsort must be increased by a factor of log N for the same reason. As a result, the number
of nodes is increased by a factor of O(log N) and the area is increased by a factor of e(log2 N).

The time is unchanged. Hence by Theorem 3, the network has O(NlogN) nodes, O( N22N)

area and sorts in O(T) steps.

For the case when fl(vN) < T < O( /N log N), we modify the construction in Theorem 3

for T = O(vN) by creating v'F9og N times as many subnetworks to sort the columns, and by

increasing the capacity of the VN interblock wires in the permuters by a factor of 1 .

As a result, the number of nodes is increased from O(N) by a factor of O(logN) to a total

of O(N log N), the area is increased from O(N) by a factor of )to a total of

og N )and the time has increased from e(v/N) by a factor of 0((,7lN)/T) to a total

of e(T), as claimed. Notice that we cannot decrease A further due to the lower bound on area
induced by the number of nodes (Theorem 2). 1

5. Small-Constant-Factor Networks

All of the sorting networks described thus far involve the AKS sorting network. Although
this circuit performs well asymptotically, it performs very poorly for any feasible value of N. In
this section, we describe networks that are optimal in every respect except the number of nodes,
and that do not use the AKS circuit. As a result, the networks constructed in this section will
be what we refer to as small-constant-factor layouts (i.e., the true quantities are less than, say,
ten times the quantities stated in the Big Oh notation). For simplicity, we will only derive the
construction for the word model since the construction for the bit model will be nearly identical.

Theorem 6: For any T in the range log N < T < vN, there is a small-constant.fartor,
bounded-degree network with O(N 2 /T 2 ) area that can aort N numbers in O(T) word steps.

Proof: The construction is similar to that for Theorem 3, except that several meshes of trees
are used to sort columns instead of a single AKS circuit. In 114, 15, 16], we showed how to sort
M numbers in O(log M) word steps using an O(M2 )-node, O(M 2 log2 M)-area mesh of trees. In
this application, we use log2 N meshes of trees each of size sufficient to sort - numbers.

This collection of meshes of trees has at most O(N 2 /T 2 ) area and (by pipelining) is capable of
sorting T log2 N ( Ji N)number columns in O(T) steps. Hence they can be used in conjunction

with a N X Tlog2 N columnsort to achieve the desired bounds. For T near or greater than

N113 , two levels of columnsort are needed, just as in the proof of Theorem 3. *

Although we did not not analyze the constant factors in the proof of Theorem 8, they are
not large. In fact, by using more, smaller meshes of trees and, say, a M X Tilog3 N

columnsort, the sorting part of the circuit can be made to have only o(N/T 2 ) area! The only

major contribution to the area in such a network are the wires that permute the data before and
after it is sorted in the columns, and they are easy to lay out.

20



By the first lower bound proved for I, this means that I > 1N log N. Hence, we can assume in
what follows that there are at least 2 log N bit positions of each type.

Divide the 6 log N least significant bit positions into two contiguous segments so that one
segment (say the one containing the most significant bits) contains at least log N bit positions
labeled L and so that the other segment contains at least log N positions labeled R. This can
be done by scarning the bit position labels from left to right (most significant positions first)
until one of the labels (say L) has been seen log N times. Partitioning the bit positicns at this
point gives log N L labels in the most significant segment and at least log N R labels in the
least uignifcant segment. Next fix all input bits to zero except for those in the logN positions
labeled L in the most significant segment and those in logN of the positions labeled R in the

I least significant segment. Fix the bits in the logN positions labeled R in the least significant
segment so that the ith input number contains the binary representation of i in these positions
(0 < i < PN). Let the input bits in the logN positions labeled L in the most significant segment
vary to indice all Al! permutations of the values in the JogN bit positions labeled R in the least
significant :;egment. We are now almost done.

r, By providing the right hair of the network with the values of the least significant log N output
bits in positions labeled R that it is not required to output, the right half of the network must
be able to produce all N! combinations of the least significant output bits correctly. Aside from
the informtion transfer I, the right half sees at most

log N<j<7 log N

Z + amin(;,,,)

nontrivial bits of the input. Hence, we know that

log N <j< 7 Iog N log N<j57 log N

min(l,,r") + I + Z + min(l,r") _ log(N!).
1, < r, P <1,"

Simplifying and applying two of the previous lower bounds for I gives 51 > log(N!) and thus
I > fV(N log N), as claimed. I

The preceding result can be extended for sorting N k-bit numbers for k < 7logN, but we
don't know how to prove it for k = (I + c) log N. These lower bounds can, in fact, be achieved
by a variety of networks, as we show in the following theorem.

Theorem 5: For any T in the range log N < T < W'N--N, there is an O(N log N)-node

bounded-degree network with ) area that is capable of sorting N O(log N)-bit numbers
in O(T) bit steps.

Proof: The construction for the case when T = O(viN) is nearly identical to that in Theorem
3. The firs difference is that log N times as many subnetworks are needed to sort the columns,
since the t-roughput for bit serial computations is slower by a factor of e(log N). In addition,
we must pipeline the bits of each word in the manner described in Section 1.2. The second
difference is that the capacity of the N interblock wires in the permuters in Steps 2, 4, 6 and 8 of
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checks overall. This means that at least one of the N rows contains at least
7 log NE rain(bi, r)

j-l+log N

checks. Let p be the shift corresponding to this row and fix the first logN bits of each input
number to force a p-shift of the less significant bits. Without loss of generality, at least

1 7 log N

ji-+log N

or the less significant input/output bit pairs are input in the left half of the network and output
in the right half. Set all the other input bits to zero. The network has now been reduced to
accepting a string of

]-7 log N

input bits in the left half and outputting the same string in the right half. By a straightforward
crossing sequence argument (e.g., see [20]), this means that

7 1 log N
> min(Lj, ry),

j il +log N

as claimed.

As a special case of the preceding analysis, we can also prove that I > JZ where Z is the
number of i,j pairs (j > log N) for which zx. and ypj are in different halves of the network. This
is easily seen by fixing the first log N bits of each input to force a 0-shift of the less significant
bits, and then following the same argument as before.

Since we will not use the first log N bits of the numbers henceforth, we fix them to be zero for
the remainder of the proof. For j > log N, label the jth bit position L or R depending on whether
most of the N jth output bit positions are in the left (L) or right (R) half of the network. Unless
I > fO(N log N) (in which case we are done), at least 2 log N of the last 6 log N bit positions are
labeled L and at least 2 log N are lableled R. If not, then (without loss of generality) there are at
most 2 log N positions with the majority of the output bits in the left half of the network. Thi1
means that at most

log N<j 7 log N

NlogN+2NlogN+ min(l, ,)Liin( V,

of the 7N log N output bits are output in the left half of the circuit. (At worst, all N log N of
the leading log N bits of each number are output in the left half, which accounts for the extra
N log N term in the preceding sum.) By assumption, this quantity must be IN log N and hence

7 log N

j- I+log N
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4.2 Results for the Bit Model

In what follows, we assume that each number to be sorted consists of k bits where, typically,
k = _(log N). If the k bits of each number are input and output locally in the network, then
it is easy to show that I > fl(kN) and thus that AT 2 > fl(k 2 N 2) for sorting N k-bit numbers
in the bit model. For large k, however, it is possible to construct circuits for which AT 2 <
O(N 2klogNlog2( I)) which is much less than E(k 2N2 ) [18]. Hence for large k, it is more
efficient to input and output the bits of each number in vastly different parts of the network. If
the same were true for k = E(log N), then the intuition that AT 2 > fl(N 2 log2 N) doesn't hold.
Nonetheless, the result is still true, as we show in the following theorem.

Theore'm 4: The information transfer I in any when and where oblivious network for sorting
N (7 log N).bit numbers must be at leat fl(N log N) in the bit model.

Proof: Consider a when and where oblivious network that sorts N (7 log N)-bit numbers,
and any pat tition of the network into left and right halves that evenly splits the location of the
output bits. As bcfore, we let zj, denote the jth most significant bit of the ith input number
and y,j den te the jth bit of the ith sorted output number (0 < i < N, 1 < i _ 7 log N). By
definition, the partition splits the set of yj,'s in half. (To be precise, the partition might not be
exactly half-half, but anything close will do, without changing the structure of the proof.)

The prcof consists or proving several seemingly unrelated lower bounds for I based on
various "worst-case" computations. At -the end, we combine the lower bounds to show that
I > fl(N log N).

3 For j in the range log N < j _5 7 log N, let rj be the number of i such that z,. is input to
the right half of the network. Similarly, define lj to be the number of i such that r," is input to
the left half of the network. Clearly, rj + 1i = N for every j. We first show that

- ~ log N>- min(Ij, ry).
j-+ .log N

Construct a table with rows corresponding to "shifts" p and columns corresponding to output
bits yi. for 0 < i < N and log N < j _5 7 log N. By setting the first log N bits of the ith input
number to be i + p (mod N) for each i, the network can be forced to shift (with wraparound)
the low order 6 log N bits of each number by any amount p (0 _5 p < N). If for a particular
shift p and output yj,, the input bit that is sent to yij by the shift (zipj) is not in the same
half as yj., then place a check in the corresponding position of the table. The numbet of checks
in any row is a natural (and standard) measure of the information transfer that will be required
to carry out the corresponding shift.

If y,, is in the right half, then there are l. checks in the corresponding column. Otherwise
there are r' checks in that column. In either case, the column corresponding to Vii contains at
least min(lj, ,i) checks. Hence the table contains at least

I log N

N E mnin (l,,r)

j-l+log N
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achieve this bound for any A and T in the range [)(log N) < T < O(%) with a bounded-degree
network containing O(N) nodes. In fact, a simple variant of the network described in Section 3.1
suffices. To prove this, we first consider the case when T 4 N=, and we show how to implement
an F X T columnsort procedure. The analysis is divided into two parts. In the first part we
show how the permutations in Steps 2, 4, 6 and 8 can be implementcd in O(T) steps with an
O(N)-node subnetwork that has O(N2/T 2) area for any T in the range log N < T < VN/i. In
the second part, we show how to sort the columns.

The permutations in Steps 2, 4, 6 and 8 have the nice property that numbers which are
adjacent in the input matrix (columnwise) are also adjacent in the output matrix (rowwise for
steps 2 and 4, and columnwise for steps 6 and 8). Hence for each of the four permutations, it
is easy to partition the input matrix and the output matrix into NIT blocks of T consecutive
matrix positions so that the numbers in each block of the input matrix are mapped to a cor-
responding block of the output matrix. Thus by linking each of the NIT blocks of T inputs
to its corresponding block of outputs with a single wire, it is possible to complete the desired
permutation in T parallel steps. (Unit-length wires are also used connect adjacent positions of
the input and output matrices.) As there are only O(N/T) non-unit-length wires, the resulting
network consumes at most O(N 2/T 2) area, as claimed.

It remains to bound the area and time required for the sorting steps. Each sorting step
is accomplished with an N/T-number AKS sorting circuit. Applying the Bilardi-Preparata 18]
result that the M-input AKS circuit has O(M 2 ) area, we find that the area of the N/T-number
sorting circuit is O(N 2/T 2 ). Moreover, this circuit has O(# log ) _5 O(N) nodes and is capable
(by pipelining) of sorting T N-number columns in O(T) steps (since T > log N), as claimed.

The algorithm just described works for any T in the range 11(logN) < T :5 &-Q. The
construction can be extended for T < O(/-N) by applying columnsort twice before plugging

in an AKS network. In particular, we first use the preceding argument to construct a network
with O(M) nodes and O(M 4I 3 ) area that is capable of sorting M numbers in O(M' l s ) word
steps for arbitrary M. We then apply a M X * columnsort procedure to sort N numbers

for Tin the range b < T < N1/ where M = .-3 SinceT < VN, M >N N/and

thus M > 2(1r - 1)'. Hence the M X 0 columnsort will complete the sorting. The fixed

permutations are performed as before using O(N) nodes, O(T) steps and O(N 2 1/T) area. The
M-number columns are sorted in turn by the single O(M)-node circuit just constructed. The
area of the sorting part of the N-number circuit is just O(M 4/3 ) - O(N'/T). The number of

nodes is O(M) = 0("::):-) :_ O(N) for T > &V2. The total time taken to sort all the columns

is f. O(M 1 3) - O(T). We summarize this result in the following theorem.

Theorem 3: For any T in the range log N < T < VN, there it an O(N)-node, bounded-
* degree network with O(N 2 /T) area that can sort N numbers in O(T) word steps.

As before, the constants in the construction can be improved to the point where the network
consists of N nodes, each with degree at most three.

C.
II

.1* ," - .-x;' ,,, '- +-, . . ,. ," . Ce"'"," 4P.+ +. e,,+, ,,.,++ ,,,_, ,,,, .+,.,, r.,. ., ,-< .+.% "

V. °l + "l I+• +1 " p+- m t fm" " "• " *ll . "--q + lm-I



,.-.w,.r.p-v

p. bit positions

o ... 0 1 0 ... 0 0 0 ... 0

r-1 numbers

0 ... 0 1 0 ... 0 0 0 .-. 0

ith number 0 ... 0 Xij 0 ... 0 1 0 ... 0
"I .-. 1 1 1 ... I I I --. I

n-r numbers

1 ..! 1 1 1 ..- 1 1 1 ... 1

Figure 10: An ezam ple of a act of inputs that forcea the network to ace zii before outputting

any of the last log N bits of the numbers and thus there are still N! distinct possible sets of
remaining output bits (depending, of course, on the values assigned to the first log N bits of each
input number). Since the network has already received all the unfixed input bits at this point,
there is only one possible set of remaining input bits. Hence, the network must have at least
log(N!) - O(N log N) bits of state. Since each node has only a constant number of bits of state,
this means that the network must contain at least O(N log N) nodes. 3

It is not difficult to prove the same lower bound for sorting N numbers, each with (I +t) log N
bits for any constant c > 0. The bound does not hold for k-bit numbers when k < log N,"
however, since, given enough time, it is possible to sort N (log N)-bit numbers with O(N) nodes.
The exact number of nodes required to sort N k-bit numbers for arbitrary k has recently been
worked out by Siegel [25].

*4. Bounds on Information Transfer and Area

In this section, we establish tight bounds on the information transfer and wire area required to
sort in both the word and bit models. The lower bounds are the most difficult and are established
by lower bounding the information transfer. The upper bounds are established by upper bounding
the area and time. Information transfer, area and time are related by Thompson's fundamentalAT 2 _ 0(12) tradeoff. We refer the unfamiliar reader to [27] for a detailed explanation of area,
time and information transfer and for a simple proof of the tradeoff.

4.1 Results for the Word Model

Thompson [271 showed that I > f0(N) for the problem of sorting N numbers in the word
model, and hence that AT 2 > f(N 2 ) for any such circuit. In what follows, we show how to
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Corollary: When combined with the AKS sorting circuit, the construction in Theorem 1
gives an O(N)-node, bounded-degree network that sorts N numbers in O(log N) word steps.

As Kruskal [13] observed, the constants in the preceding construction can be improved to the
point where the N-number sorting network is degree-3 and has at most N nodes. To prove this,
first note that every bounded-degree node can be locally expanded into a constant number of
nodes each with degree at most 3. The resulting network still has cN nodes for some constant c
and still sorts N numbers in O(log N) steps. The proof is completed by observing that the same
network can actually sort a list of cN numbers by replacing each number with a list of c sorted
numbers and each comparison of two numbers with a merging and halving of two c-number lists.
The proof that the resulting algorithm actually sorts the cN numbers is not hard to work out.
(For example, see [5] or Problem 38 of Section 5.3.4 in [12J.)

Because every number to be sorted must be input before the rank of any number can be
determined, all N numbers must be input and remembered before any of them can be output. If
each node can remember at most a constant number of numbers, this means that at least Ol(N)
nodes are required to sort N numbers in the word model. This kind of argument is used more
carefully in the following section, where we prove an fl(N log N)-node lower bound for the bit
model.

3.2 Results for the Bit Model

As was mentioned in the introduction, the N-input AKS sorting circuit can also be used as an
O(N log N)-node bounded-degree network for sorting N numbers in O(log N) bit-steps. In what
follows, we show no fewer nodes could have been used (up to a constant factor), no matter how
much time is allowed. The proof applies only to network algorithms that are when and where
oblivious (i.e., to algorithms for which the time and location of each input bit and output bit is
fixed ahead of time, so as not to be dependent on the value of the inputs or the running of the
algorithm). In addition, the inputs are supplied just once.

Theorem 2: Any when and where oblivious network capable of sorting N (21ogN)-bit
numbers in the bit model must have fl(N log N) nodes.

Proof: The basic idea is to show that a large portion of the input bits must be presented to
the network before much of the information can be output, thus forcing the network to remember
a large number of bits.

Let zxi denote the jth most significant bit of the ith input word and yj" denote the jth bit
of the ith sorted word (0 < i < N, I < j : 2logN). We first show that any input/output
schedule for a correct algorithm must input z,3 before outputting y,. whenever 8 > j. If this
were not the case, then consider the action of the algorithm on the input numbers (written in
binary) shown in Figure 10. Every input bit is specified except for zij. If zxi = 0, then the rth
sorted number is (in binary) all zeros except for a one in the jth position. Since a > j, this
means that y,. = 0. ir z - I on the other hand, then the rth sorted number is (in binary) all
zeros except for a one in the jth and sth positions, and y,, = 1. Hence, there is no way that the
algorithm can always correctly output V.,. before seeing zo.

Because the circuit is when oblivious, the preceding argument means that any sorting circuit
must (in particular) input x,, for all i < N and j _5 log N before outputting y,. for any r < N
and 8 > log N. Consider inputs for which the last log N bits of the ith input number are fixed
to equal i for each i < N. Also consider the step or the algorithm in which the last of the first
log N bits of each number is input to the network. At this point the algorithm has not output
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Figure 8: A more effective, diagonalizing permutation for Step 4 of columnsort.

for a but the extreme cases when i+j > r and i+j < s-1. This would mean that every number
would be at most s(s - 1)/2 from its correct position after Step 4, and thus that r > s(s- 1)
would be sufficient. In addition, the constraints that rs = N and s I r can be removed provided

* -. that r is one larger.

3. Bounds on the Number of Nodes

In this section, we prove that N nodes are sufficient to sort N numbers in the word model
and that O(N log N) nodes are necessary to sort N k-bit numbers in the bit model whenever
k > (I + t)logN for some constant c > 0.

3.1 Results for the Word Model

In the following theorem, we show how to use columnsort to convert a family of f(N)-level
circuits for sorting N numbers into a family of bounded-degree, O(N)-node circuits that can
sort N numbers in 0(f(N)) word steps. In the theorem, we choose f(N) = o(N 1l3 ) so that
r > 2(s - 1)' when columnsort is applied, where r =-- and a = 1(N). As a consequence, we
can transform the AKS circuit for Problem I into a solution for Problem 2.

Theorem 1: Given a monotone function f such that f(N) - o(N 113 ) for all N and a family
of f(N)-level circuits for sorting N numbers, one can construct a family of bounded.degree,.
O(N)-node networks that can sort N numbers in 0(f(N)) word steps.

Proof: Select a circuit from the family that sorts N numbers. Since f is monotone, thisiI(N)

circuit has depth f( N)) 5 f(N) and at most N nodes. By pipelining the columns of an

_ __X f(N) matrix through the circuit, the columns of the matrix can all be sorted in 2f(N)
word steps. By simply hard-wiring the four fixed permutations used in Steps 2, 4, 6 and 8 of
columnsort, a matrix or N numbers can be sorted in 0(f(N)) word steps by columnsort. The
network is pictured in Figure 9 for the special case when f(N) = e(log N). The total number of
processors used is clearly O(N) and each processor has bounded degree. Moreover, the processors
need to have only a finite amount of state information aside from the ability to store and compare
e(logN)-bit numbers. l
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Hence the position of z after Step 4 is at most

~(8 _ 1)2  _-j(o ) _ (a 1)%

beyond its correct position.

A symmetric argument shows that the true rank of z is at most si + aj. Hence the position
of z after Step 4 is at most j(s - 1) :_ (a - 1)2 short of its correct sorted position. Thus we have
established that every number is within (a - 1)2 of its correct position after Step 4. When a = 2,
we have the special case result for odd-even merge. When a = i = we see that virtually

nothing has been gained, which is why the algorithm doesn't work for square matrices.

We now show that Steps 5-8 are sufficient to complete the sorting. For simplicity, we assume
in what follows only that every number is within Lr/2J of its correct sorted position. Since r >
2(s - 1)2, we are always guaranteed that this condition is met after completion of Step 4.

After Step 4, every number that belongs in the top half of column j (0 < j < s) when sorted
is in column j or in the bottom halr of column j - 1. Similarly, every number that belongs in the

bottom half of column j is in column j or the top half of column j + 1. Otherwise, some number
would be more than ir/2J away from its correct position. After Step 5, every number that belongs
in the top half of column j is in the top half of column j or the bottom half of column j - 1.
Were this not true and were such a number z to be in the bottom half of column j, then z, every
number ahead of x in column j and, of course, every number in columns 0, 1,...,j- 1 would have
to have rank less than rj + r/2, which is impossible. Alternatively, were z in the top of column
j - 1 at this point, then there could be at most r(j - 1) + r - 1 -rj - 1 numbers of rank less
than or equal to rj - 1, which is also impossible. (Recall, that there are rj such numbers since
the smallest number has rank zero.) This total is calculated by counting the r(j - 1) numbers
in columns 0, 1, ... ,j - 2 , the I - 1 or fewer numbers ahead of z in column j - I and the or
fewer numbers in column j that could belong in column j - 1. Using identical arguments, we can
also show that after Step 5, every number that belongs in the bottom half of column j is in the
bottom half of column j or the top half of column j + 1.

Combining the two facts in the preceeding paragraph, we find that every number that should
be in the bottom half of column j or the top half of column j + 1 when sorted is in one of these
two half-columns after Step 5. Hence, Steps 6-8 complete the sorting. This completes the proof
that columnsort works.

Columnsort provides an efficient way to sort N numbers given that we know how to sort r
numbers where rs = N, s r and r > 2(s- I)2. For example, 24 numbers can be sorted by
repeatedly sorting subsets of 8 numbers. It would be interesting to know how much the constraint
on the size of r can be relaxed without radically changing the algorithm. Some improvement is
definitely possible. For example, if Step 4 were replaced with the diagonalizing permutation
shown in Figure 8, it would be necessary only that r > s(s - 1). This is because a number in the
i,j position after Step 3 would then correspond to a rank of

si + sj - s(a - 1)/2 + 1 - j

I1
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At first glance, it seems impossible that such an algorithm works. For example, if the matrix
were square (i.e., if r = a, which is not allowed), then we would essentially just be sorting rows
and columns which, is well-known to leave entries arbitrarily far away from their correct sorted
position.

A far better intuition comes from the case when r = N/2 and s = 2. In this special case, we
have precisely odd-even merge. In odd-even merge, a list of N numbers is divided into 2 sublists,
each with N/2 numbers. This division corresponds to entering the numbers in an N/2 X 2 matrix:
each column of the matrix contains a sublist. The two sublists are then sorted, as is done in Step
1 of columnsort. Then the odd-index numbers in each sublist are combined to form a new sublist,
as are the even-index numbers. This corresponds to the transpose (or "unshuffie") operation in
Step 2 of columnsort. Next, each sublist is sorted, as is done in Step 3 of columnsort. (In odd-even
merge, this sorting step is accomplished with a recursive merge.) After sorting, the sublists are
shuffled together, as is done in Step 4 of columnsort. At this point, every number is within one
of its correct position, so each number is compared to its neighbors and (possibly) interchanged,
thus completing the sorting. The same maneuver is accomplished in a rather brute-force.way by
columnsort. In Step 5, all but the top and bottom numbers in each column are compared to their

* neighbors by sorting the columns. Steps 6-8 insure that comparisons are made between numbers
at the bottom of one column and the top of the next column.

The action of columnsort for arbitrary r > 2(s - 1)2 is very much like that for odd-even
merge. After Step 4, we will be guaranteed that every number is within (8- 1)2 of its correct
sorted position. Then Steps 5-8 are sufficient to finish the sorting. We prove these two facts in
what follows.

Consider a number z that is in position i, j of the matrix after Step 3. A simple calculation
shows that z is sent to a position in Step 4 that corresponds to a rank of p = is + j In the sorted
list. (Recall our convention that the smallest number has rank zero.) From the position of z after
Step 3, we know that x is greater than or equal to at least i + 1 numbers in the jth column of
the matrix after Step 2. Let ah denote the number of these i + I numbers that originally come
from column k of the matrix (i.e., before Step 2 transposed the matrix). By definition,

oa-•

Since only the jth and every sth number thereafter of the (sorted) kth column after Step I
appear in the jth column after Step 2, this means that z is greater than or equal to at least

1(a# - I)s + j + I numbers in the kth column of the matrix after Step 1. Hence the true rank of
z is at least

:: I)#. + + 1.
* k-,,

Substituting i + 1 for - ak and simplifying, we find that the true rank of z is at least

+ j - (a -1

10
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Figure 7: The step by step application of columnsort to the natriz in Figure 4.
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